Obesity-Associated Hepatosteatosis and Impairment of Glucose Homeostasis Are Attenuated by Haptoglobin Deficiency
نویسندگان
چکیده
OBJECTIVE Haptoglobin (Hp) is upregulated in both inflammation and obesity. The low chronic inflammatory state, caused by massive adipose tissue macrophage (ATM) infiltration found in obesity, and low adiponectin have been implicated in the development of insulin resistance and hepatosteatosis. The aim of this work was to investigate whether and how Hp interferes with the onset of obesity-associated complications. RESEARCH DESIGN AND METHODS Hp-null (Hp(-/-)) and wild-type (WT) mice were metabolically profiled under chow-food diet (CFD) and high-fat diet (HFD) feeding by assessing physical parameters, glucose tolerance, insulin sensitivity, insulin response to glucose load, liver triglyceride content, plasma levels of leptin, insulin, glucose, and adiponectin. ATM content was evaluated by using immunohistochemistry (anti-F4/80 antibody). Adiponectin expression was measured in Hp-treated, cultured 3T3-L1 and human adipocytes. RESULTS No genotype-related difference was found in CFD animals. HFD-Hp(-/-) mice revealed significantly higher glucose tolerance, insulin sensitivity, glucose-stimulated insulin secretion, and adiponectin expression and reduced hepatomegaly/steatosis compared with HFD-WT mice. White adipose tissue (WAT) of HFD-Hp(-/-) mice showed higher activation of insulin signaling cascade, lower ATM, and higher adiponectin expression. Hp was able to inhibit adiponectin expression in cultured adipocytes. CONCLUSIONS We demonstrated that in the absence of Hp, obesity-associated insulin resistance and hepatosteatosis are attenuated, which is associated with reduced ATM content, increased plasma adiponectin, and higher WAT insulin sensitivity.
منابع مشابه
Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity
Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is relate...
متن کاملHaptoglobin deficiency determines changes in adipocyte size and adipogenesis
Haptoglobin (Hp) is an inflammatory and adiposity marker, its expression during obesity being specifically induced in the white adipose tissue (WAT). We previously reported that when challenged with a high fat diet (HFD) Hp-/- mice are partially protected from the onset of insulin resistance and hepatosteatosis. The aim of the present study was to get further insights into Hp function in WAT. T...
متن کاملTransgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.
Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-spe...
متن کاملFarnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity
OBJECTIVE Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has n...
متن کاملLoss-of-Function Mutation in Myostatin Reduces Tumor Necrosis Factor α Production and Protects Liver Against Obesity-Induced Insulin Resistance
OBJECTIVE Insulin resistance develops in tandem with obesity. Ablating myostatin (Mstn) prevents obesity, so we investigated if Mstn deficiency could improve insulin sensitivity. A loss-of-function mutation (Mstn(Ln)) in either one or both alleles of the Mstn gene shows how Mstn deficiency protects whole-body insulin sensitivity. RESEARCH DESIGN AND METHODS Mstn(Ln/Ln) mice were weaned onto a...
متن کامل